(2)

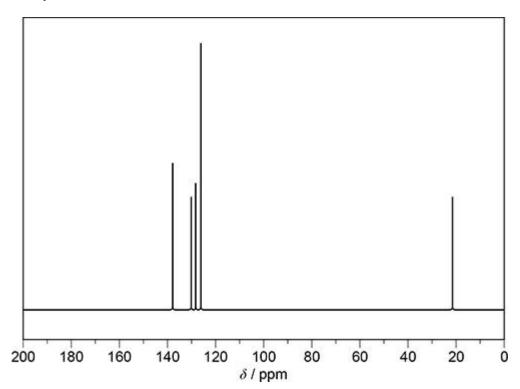
Q1.

This question is about hydrocarbons.

(a) Eicosane $(C_{20}H_{42})$ can be cracked by heating to 700 K in the presence of a catalyst.

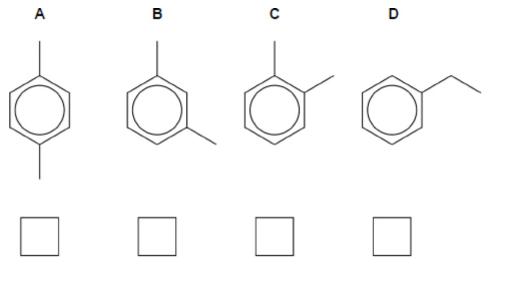
The products are

- an aromatic hydrocarbon C₈H₁₀
- an alkane C₆H₁₄
- another alkane.


$$C_{20}H_{42} \rightarrow C_8H_{10} + C_6H_{14} +$$

Complete the equation for this reaction.

Give a suitable catalyst for this reaction.


Catalyst	
•	

(b) The figure below shows the ^{13}C NMR spectrum for the aromatic hydrocarbon C_8H_{10}

Which of these is the structure of C_8H_{10} ?

Tick (✓) one box.

(c) Cracking can also be done without a catalyst, using a temperature of 1200 K and a pressure of 7000 kPa

State the type of product that is formed in high percentage in this type of cracking.

(1)

(e)

(Total 10 marks)

(d) A sample of butane has a volume of 20 cm³ at room temperature and pressure.

The sample is burned completely in 1350 cm³ of air.

The final mixture is cooled to room temperature and pressure.

$$C_4H_{10}$$
 + 6 $\frac{1}{2}$ $O_2 \rightarrow$ 4 CO_2 + 5 H_2O

Calculate the total volume of gas in the final mixture. Assume that air contains 21% by volume of oxygen.

Total volume of gas remaining	cm ³ (4)
Natural gas is used in power stations to produce electricity.	(-
Natural gas contains sulfur impurities. Sulfur dioxide forms when these impurities are burned.	
State an environmental problem caused by sulfur dioxide.	
Give the formula of a compound that is used to help remove sulfur diox from the combustion products.	ide
Environmental problem	
Formula of compound	
	(2)

Q2 .		pounds V , W , X and Y are isomers with the molecular formula C₅H ₁₀ O ₂	
		ers V and W are carboxylic acids with formulas that can be written as COOH	
	(a)	Give an equation for the reaction of C ₄ H ₉ COOH with sodium hydrogencarbonate.	
			(1)
	(b)	Isomer V has an asymmetric carbon atom.	
		Deduce the structure of V .	
	(0)	Jacobar M. han faur packs in its 1H NMD anastrum	(1)
	(c)	Isomer W has four peaks in its ¹ H NMR spectrum.	
		Deduce the structure of W .	
		Deduce the integration ratio for the four peaks in the $^1\mathrm{H}$ NMR spectrum of \mathbf{W} .	

Integration ratio

(d) Isomer **X** has three singlets with integration ratio 1:3:6 in its ¹H NMR spectrum.

Deduce the structure of **X**.

Explain why the peaks in the ¹H NMR spectrum are singlets.

Structure

Structure

Explanation _____

(2)

(2)

(e) The table below shows information about the peaks in the ¹H NMR spectrum of isomer **Y**.

Chemical shift δ / ppm	Integration ratio	Splitting pattern
3.65	2	singlet
1.19	3	singlet

Draw the parts of the structure of ${\bf Y}$ that can be deduced from each of these peaks.

Deduce the structure of Y.

State how many peaks are in the ¹³C NMR spectrum of Y.

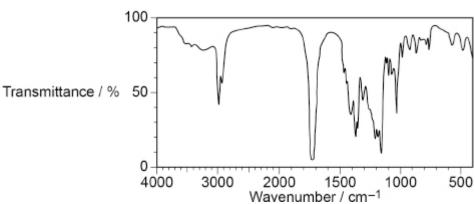
Part of structure from peak at δ = 3.65 ppm

Part of structure from peak at δ = 1.19 ppm

Structure of Y

Number of peaks in ¹³C NMR spectrum of **Y**

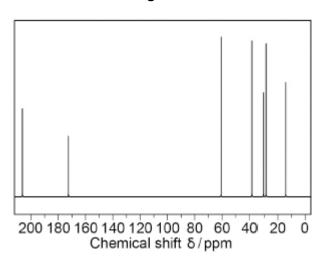
(6)


(Total 12 marks)

Q3.

This question is about compound \boldsymbol{Z} , with molecular formula $C_7H_{12}O_3$

Figure 1 shows the infrared spectrum of **Z**.



(a) Identify the bond that causes the absorption at 1725 cm⁻¹

(1)

Figure 2 shows the ¹³C NMR spectrum of **Z**.

Figure 2

(b) How many different carbon environments are there in a molecule of **Z**?

	5	6	7	8
Tick √ one box				

Use Table C in the Data Booklet to help you answer this question.		Use Table C in the Data Booklet to help you answer this question.	
--	--	---	--

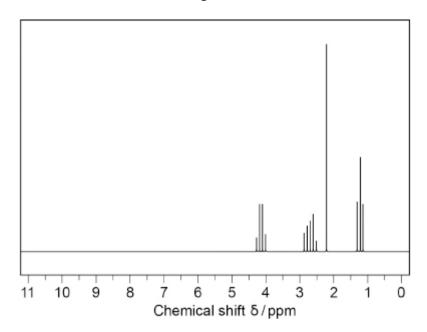
(d) The table below shows data from the ¹H NMR spectrum for compound **Z**.

Chemical shift δ / ppm	4.10	2.60	2.56	2.19	1.26
Integration ratio	2	2	2	3	3
Splitting pattern	quartet	triplet	triplet	singlet	triplet

Explain what can be deduced from the splitting patterns and chemical shift values for the peaks at δ = 4.10 ppm and at δ = 1.26 ppm

Deduce the part of the structure of **Z** that causes the peaks at δ = 4.10 ppm and δ = 1.26 ppm

Use **Table B** in the Data Booklet to help you answer this question.


Peak at δ = 4.10 ppm	
Peak at δ = 1.26 ppm	
Part of structure	

(5)

(e) Deduce the part of the structure of **Z** that causes the peak at δ = 2.19 ppm Part of structure

Figure 3 shows the ¹H NMR spectrum of compound **Z**.

Figure 3

(†)	suggest why it would be difficult to determine the structure of Z using the spectrum in Figure 3 , without the information in the table in part (d).

(g) Deduce the structure of **Z**.

(1) (Total 11 marks)

Q4.

This question is about compound **X** with the empirical formula C₂H₄O

Figure 1 shows the infrared spectrum of X.

Figure 2 shows the ¹³C NMR spectrum of **X**.

The 1 H NMR spectrum of **X** shows four peaks with different chemical shift values. The table below gives data for these peaks.

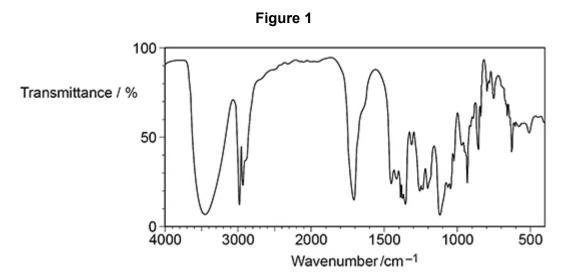
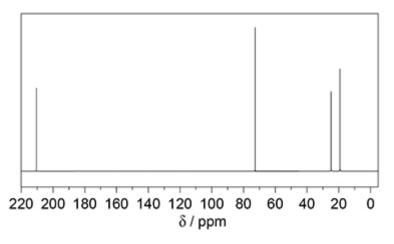



Figure 2

Chemical shift δ / ppm	3.9	3.7	2.1	1.2
Splitting pattern	quartet	singlet	singlet	doublet
Integration value	1	1	3	3

deduce the structure of compound X .	ii be used to
	(Total 6 marks